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NUMBERS OF 1.88 AKO 2.93 

By Thomas G. Piercy and Harry W. Johnson 

An experbental  investigation was conducted at Mach numbers of 
1.88 and 2.93 t o  determine the performance characterist ics of a conical 
external-compression s i d e  inlet m o d e l  u t i l i z ing  a swept-lead5ng-edge 
boundary-layer-removal  scoop. Two alternative  boundary-layer-ramal 
systems were &so investigated wherein removal was accomplished  by 
me&ns of a 6Z0 6' deflection wedge, which replaced  the  ducting of the 
swept  scoop, and by  cowl-lip scoops. Comparisons are made with  the 
performance of t he  inlet u t i l i z ing  the ram scoop (straight  leading edge 
with  enclosed sides) and other removal systems previously  reported. 7- 

V u 
With maximum removal of the  boundary layer, the lnlets with 

straight and swept-leading-edge  scoops Were found to give  essentially 
the same total-pressure  recovery. A t  Mach 1.88 the maxinun to ta l -  
pressure  recovery was approximately 89 percent. A t  Mach 2.93 the m a x i -  
rrmm total-pressure  recovery of all systems of removal investigated 
herein was approximately 49 percent,  although 51.5 percent was achieved 
in previous tests using  the ram-scoop removal system. When the  mass 
flow captured by the boundary-layer scow was reduced, t he  swept-scoqp 
i n l e t  was found to exhibit  approximately  the same large  adverse  effect 
on inlet  pressure  recovery and stability as was previously observed 
with the straight ram scoop. 

- 

The deflection wedge and the cowl-lip s c ~ o p  r e m o v a l  systems w e r e  
found to  give  total-pressure  recoveries comparable with those of the 
ducted  scoops when the boundary-layer-removal  system was suff ic ient ly  
large i n  comparison with  the  boundary-layer  thickness. At equivalent 
pressure recovery  the  cowl-lip  scoop spi l led the least amount of air  
and indicated a total   projected frontal area of inlet   p lus  scoop as 
8111851 as ar smaller than  the  inlet  with  conventional scoop or wedge 
removal. systems. 

* 
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The use of the ram-type boundary-layer  scoop (straight l e a d b g  
edge with enclosed sides) as a m e a n s  of remaving the boundary layer 
ahead of conical  external-cmpression side _.~let"configurat ions a t  Mach 
numbers of 1.88 and 2.93 has be- reported in references and 2, 
respectively. The i n l e t  for,these tests was mounted on a f la t  p la te  
a t  zero angle of attack md yaw with respect t o  the l o c a   f r e e  stream. 
X t  was observed that, with suff ic ient  removal of the boundary layer 
ahead of the inlet, tatal-pressure  recoveries comparable with  those of f 
nose in l e t s  could  be  obtained a t  Mach 1.88; while at  Mach 2.93 the 
total-pressure  recovery was slightly lower than that obtained w i t h  a 
nose in l e t  f o r  the case  considered. Scg~e.rec.q.t;.-r.vestigations of other 
s i d e  i n l e t  configurations  using boundary-laye?-removal sCO&E i n s t a l l e d  

cn cu 

on the fuselage of  a proposed super~-onic. airplane -- are .. reported . . . . . . . . .  in refer-  
ences 3 t o  5. 

-" . . . . . .  " 

. . . . . . . . . . . . . . .  ...... 

The investigations  reported i n  references  1.and 2 with the ram- 
scoop  removal  system have indicated that while the inlet performance 
WRS acceptable with sufficient removal of the boundary layer, reduction 
of the amount of boundary-layer removal severely reduced the in l e t  
total-pressure recovery. If the reduction in removal occurred  through 
a reduction in the bqundary-laye&3coop mass fl& with resul tant   spi l -  
lage  into the inlet, an a d d i t i o n a l  adverse  effect of unstable oprati911 c 

was encountered. 

. .  

I n  reference 1 several   al ternative systems of boundary-layer 
removal wherein the boundary layer was diverted around the in l e t  w e r e  
investigated  briefly.  For-those t e s t s  the boundary layer was simply 
allowed t o   s p i l l   t o  the sides around the in le t ,  either beneath the 
s p l i t t e r  plate sep.w.ating the w e t .  and boundary-layer flows or  through 
inlet-cowl  slots. Inlet  total-pressure  recovery for ;2u-variations of. 
boundary-layer r a m a l  investigated showed fmprovements over that 
obtained with the ducted scoop .when no boundary layer was allowed t o  
enter  the  duct  (i.e.,  low scoop mass-flow ra t io)  r. The swept-leadhg- 
edge sp l i t t e r   p l a t e  with complete  blockage of the flow do~&rtream of 
the inlet and beneath the sp l i t t e r   p l a t e  was the:most  efgective of the 
variations  investigated. Th i s  configuration  successfully  diverted  the 
boundary layer around the i n l e t .  

. - . 
. f  

... 

- .. 

For the  designer who wishes t o  u6e the a i r  obtained from boundary- 
layer removal far coolfng  or as a source of secondary air i n  ejector 
designs, the swept-leading-edge  boundary-layer scoop with ducting  there- 
fore appeared  prauis-bg;  pressure  recovery  obtained  with maximum removal 
of the boundary layer  should be- equivalent t o  t&t-previously  obtained 
using a ram scoop, and the inlet pressure  recovery should be less sensi- 
t i v e   t o  boundary-layer scoop mass flow  because-of  the  ablility of the 
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boundary layer t o  s p i l l   t o   t h e   s i d e s  of the inlet rather than over the 
spl i t ter   p- la te  and i n t o  the inlet. 

In the  present  investigation  the performance of the  inlet   wi th  
the swept  scoop was determined a t  Mach numbers of 1.88 and 2.93 at the 
NACA Lewis laboratory and compared with  the inlet performance  obtained 
using the ram scoop of references 1 a d  2. In addition, wedges beneath 
the   sp l i t t e r   p la te  and cowl-lip  scoops were investigated and ccaqpared 
with other methods of boundary-layer  removal. 

SYMBOLS 

The following symbols are used in th i s   repor t :  

static-pressure  coefficient,  defined by 

pressure  drag  coefficient,  defined by - 1 J m  

. .. - -  0 

height of b o u n d a r y - l a y e r - r ~ ~  system above f lat  p la te  

dlmensionless  boundary-layer  scoop  height  parameter 

plate  length, measured from leading edge t o  spike t i p  

dlmensionless  plate  length  parameter 

Mach number 

mss flow 

bounaary-layer  profile  parameter, baaed on V/Vo = (y/6) 

t o t a l  pressure 

s ta t ic   pressure 

free-stream dynamic pressure, s, = 

l/N 

inlet   radius ,  1.5 in. 
r a t i o  of velocity i n  boundary layer t o  free-stream  velocity 

normal distance above p la te  
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2 lateral   distance from center line of inlet measured para l le l   to  
plate  . " 

Y r a t i o  of specific  heats =I 1,4 . . . . . . . - 

6 boundary-layer  thickness,  distance from f la t  plate  surface  to 
point i n  boundary layer where-velocity is equal t o  0.99  f'ree- 
stream velocity 

6/R dimensionless  boundary-layer  thickness  parameter 

S*/6 boundmy-layer form factor,  quotient of boundary-layer  displace- 
ment and momentum thicknesses 

Subscripts: 

D i n l e t  " . 

S boundary-layer  scoop 

W wedge 

I 

0 free stream 

1 conditions 112 inch  upstream of spike t i p  

2 conditions at ex i t  of diffuser or boundary-layer  scoop 

Boundary-Layer-Removal Systems 

The side i n l e t  configurations  utilizing ram-type scoops investi- 
gated at Mach numbers of 1.88 and 2.93 have been described i n  refer-  
ences 1 and 2 ,  respectively. The i n l e t  i n  each  case was half-conical, 
with external compression provided  by  cone.  half-angles of 25' and 30° 
for Mach numbers of 1.88 and 2.93, respectively. The i n l e t s  were mounted 
on a flat  plate ,  and the boundary layer  whfch.developed on the plate  
was removed with  scoops  having  leading  edges normal t o  the flow. The 
i n l e t s  were a t  zero  angle of attack and y a w  with  respect  to the local  
f ree  stream. For the  majority of the  present tests the boundary-layer- 
removal system was modified as follows (see f ig .  l (a )>:  
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(a) The spl i t ter   p la te   dividing  the flow for the i n l e t  and 
boundary-layer scoop was swept fram the "pi.$ t i p  to thg l i p  of the 
inlet. This resulted in sweep angles of 42 36' and 38 58' for the 
configurations of Mach numbers 1.88 and 2.93, respectively. 

(b) The swept sp l i t t e r   p l a t e  was beveled on the lower side at 
approxhately 9 .So in the streamwise  plane. The flat pla te  upon which 
the initial boundary layer was b u i l t  up was machined out  directly 
beneath  the  spli t ter   plate,  so that for  zero removal of the boundary 
layer  (h = O), t he   sp l i t t e r   p l a t e  could becme  flush  with  the main 
plate .  The beveling of the sp l i t t e r   p l a t e  and the machining of €he 
main pla te  Were performed t o  lessen  the  possibil i ty of choking beneath 
the   sp l i t t e r   p la te  at  smEtll values of  h. (Details of the swept-scoop 
configuration may be  seen in photographs of a related model in f i g  1 2 .  ) 

In addition to the removal of the  boundary layer  through scoops, 
two al ternat ive systems of boundary-layer  removal were investigated. 
The f i r s t  of these employed a wedge beneath  the  spli t ter   plate to 
divert   the boundary layer.  This wedge was instrumented  with  static- 
pressure  taps  to  provide data for determination of the pressure drag 
incurred  with  this  system of removal. The wedge removal configuration 
is shown schematically i n  f igure   l (b)  , while a photograph of the model 
installed i n  the 18- by 18-inch Mach 3.05 tunnel is included in fig- 
ure l ( c ) .  The  wedge t i g  was located at the apex of the conical spike 
with the wedge swept  back at  as small an included  angle (62O 6' 1 as the 
model would permit. 

The second al ternat ive system  of  boundary-layer  removal wa8 an 
adaptation of ca r1  slots  introduced in reference 6. "Cowl-lip"  scoops 
were provided t o  fo rc ib ly   sp i l l   t he  boundary layer  through  the cowl 
slots. T h i s  was accomplished  by a continuation of the spFke centerbody 
t o  the cowl and by providing a splitter pla te   ins ide   the   l ip   to   d iv ide  
the  boundary-layer  scoop and main i n l e t  flows. The cowl-lip scoop con- 
f igu ra t ion  is shown schematically i n  figure 1( d)  ; a photograph of the 
model instal led i n  the 18- by  I8-Fnch Mach 1 .91  tunne l  is included in 
figure l (e )  . 

lnstrumentation 

For the  boundary-layer-removal  systems  involving  ducting, a system 
of rotameters was used t o  measure and control  the mass flow through the  
boundary-layer  scoop, as described in references 1 and 2. The flow 
captured by the scoop w a s  returned  to  the  tunnel  test   section. T o t a l  
pressures i n  the  boundary-layer  duct were measured with a 17-tube  rake. 
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For the tests at. Mach 1.8.8.the flow properties following diffusion 
w e r e  determined w i t h  the rake shown i n  f igure 2. The rake  consisted of 
13 p i to t - s ta t ic  tube6  each of which (with the  exception of the center 
tube) W&S located a t  the centroid of equal areas. The rake waa located 
approximately 2 diffuser exit dlmneters downstream of the end of the 
diffiser section. Mass flow through the i n l e t  was remotely  controlled 
with a butterfly  valve and was measured with a s tandard  A.G.M.E. 4-.Fnch 
or i f ice ,  a6 described i n  ref'erence 1. 

For the tests at Mach 2.93, inlet mass flow was contro-Ued .wi-th a 
movable exit plug, and flow  characteristic6 following diffusion were 
determined w i t h  a rake  consisting  of  41total-pressure  tubes, 4 static- 
pressure.  tubes, and 4 wall s+,atic  orifices.  This instrumerrtat ion was 
the same as that described in reference 2.  

" 

i 

.. . 
" 

Boundary-Lay-er Data 

The boundary layer 1/2-Snch upstream  of the spike tip was deter- 
mined from pressure measurements as described i n  references 1 and 2 for  
a plate  length  parameter L/R of 9.67. The i n i t i a l  defects i n  mass 
flow and total   pressure due to   t he  presence of the boundary layer are 
reproduced b figure 3. Cmborundum dust n-.. the leading edee of the.. 
p la te  developed turbulent boundmy-layer profiles  wlth  the  characteris- 
t i c s  presented in the fallowLng table: 

. .  - ". 

- - 
% L/R I 6*/e m 6 / ~  

1.88 
7 .160 5.05 9.67 2.93 
7 0.150 2.85 9.67 

- .  

The  power prof i le  parameter N was determined  using  the  calculated 
values of 6*/e from reference 7. 

T e s t  Conditions and Variables 

Test-section  total  temperature was held a t  150' F, while the t o t a l  
pressur- essentially  atmospheric. T s resulted in test-section 
Reynolds numbers of the order of 3.24r10'and  1.75X1O6 per foot" for test 
Mach numbers of 1.88 and 2.93, respectively. The  dew point was main- 
t a ined  i n  the range -20° t o  -5O F t o  ensure  negligible  water condensa- 
t ion  effects .  ., 

For the  configurations employing swept-leading-edge  boundary-layer 
~coops,  the boundary-layer.scoop.height h .  was varied  . . from . j  zero to a .L . - .". 
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value  greater than the boundary-layer  thickness. A t  each  scoop height 
the inlet mass flow was varied from the  supercrit ical   value to well 
within  the  inlet   instabil i ty  region, and the  boundary-layer s c o q  flow 
was vmied from the maximum attainable to zero. Inlet  total-pressure 
recovery w&s obtained as a function of inlet mass flow, scoop mass flow, 
and the  height of the boundary-layer scoop. 

For the wedge configurations  the  original flat p la te  (i.e., with- 
eo' out the  indentation  beneath  the s p l i t t e r  plate)  was used. Systematic a 
tP 
t P '  

variation of the amount  of boundary-layer removal wa8 obtained by vary- 
ing  the  height of the wedge. Inlet   pressure recovery and mass flow were 
determined as described  previously. 

For the  cowl-lip scoop configurations  the  ,nonindented f lat  p la te  
was a l so  used. The height of the scoop was varied i n  steps t o  o b t a b  
the  effect  of Vasious amounts of boundary-layer  removal on the   in le t  
pressure  recovery and mass flow. 

Pressures were recorded  photographically 011 multfmanmeter boards.  
Schlieren  pictures of the flow i n  the  vicinity of the i n l e t  were made 
during  steady and unsteady  conditions.  Pressures  ana mass flaws pre- 
sented  during  unstable  operation  represent, as nearly as possible, 
average  values. 

Mass-Flow and Total-Pressure  Referenclng 

As described i n  references 1 and 2, the mass flow and to t a l -  
pressure  recovery of the side inlet   wi th  scoop-type removal were refer-  
enced to conditions 1/2 inch  upstream of the  spike  tip. The reference 
total   pressure P ~ , D  represents art area-weighted  pressure camposed  of 
fYee-stream and the lower energy  boundmy-layer flow in the stream tube 
of the  projected  inlet   area.  Similarly, the mass flow I I I ~ , ~  represents 
the mea-weighted mass flaw in the stream tube of the  projected inlet 
mea  decreased by approxhately 7 percent design spil lage.  Tota l  pres- 
sure and mass flow expressed as ratios of the  free-stream  values for 
the  inlet  and scoop me reproduced fn f i  e 3 as functions of the 
boundary-layer  scoop height p a m e t e r  hr These curves  permit the 
data presented t o  be  referenced t o  free-stream  conditions i f  desired. 
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DISCUSSION OF flESULTS 

Swept-Scoq In l e t  

For each  value of the swept-scoop height.investigated,  the boundary- 
layer scoop mass flow was varied f'rom the maximum a t ta inable   to  zero  
for  several  values of the  diffuser  exit Mach number. The data are 
presented in  figures 4 and 5 for Mach numbers of 1.88 and 2.93, respec- 
t ively,  for several  values of h/6. I n l e t  total-pressure  recme 

with  the scoop mass-flow r a t i o  and diffuser   exi t  Mach 

number M2 as parameters. Dashed l i n e s  represen*nstable  operation. 

spillage.) It is immediately evident from these  plots that, contrary 
t o  expectations,  the  inlet was quite   sensi t ive  to  bpundarg-layer scoop 
mass flow. A comparison of these  plots  with similar data i n  references 
1 and 2 shows only a very  slight improvement i n  this   respect .  However, 
with  supercritical  inlet  operation, it was noted that h l e t  s t ab i l i t y  
was s l igh t ly  less sensi t ive  to  reduced  scoop mass flow using the swept 
scoop as compared with  the ram scoop. 

P2 , d P l J D  is plotted as a mass-now r a t i o  %g,nJ 
(It should be noted tbt m l , D  -incorporates  approximately 7 percent 

Swept boundary-layer scoop at  Mach 1.88. - A t  Mach 1.88 (fig.  4) 
peak total-pressure  recovery  occurred at smller i n l e t  mass flow than 
was noted for  the ram scoop.  Visual  evldence of the stable subcri t ical  
operation  possible w i t h  the wept scoop is shown in figure 6, whlch has 
been retouched  Blightly for   c la r i ty .  For both ram and swept scoops it 
was n o k d  that at  the larger  valuee of h/6 investigated peak pressure 
recovery Was 8tt8Wed with Slight-1y reduced SCOOP m B B 8  flow. 

.rfl 

0, 
d 

cu 

With supercrit ical  i n l e t  operation some indications of the  desired 
reduction of sensi t ivi ty  of the  i n l e t  t o   t h e  scoop mass flow were noted, 
since  the scocrp mass fluw could  be  reduced as much as 25 percent  with 
very l i t t l e  reduction of i n l e t  pressure recovery  or mass flow. Insight 
into this reduction In  sensi t ivi ty  may be gained by re fer r ing   to  figure 
6(d). Even with maximum scoop mass f l o w ,  a partially  expelled shock 
system was noted  beneath the   sp l i t t e r   p la te .  For. a. limited  range of 
scoop mass-flow ra t ios   p r ior  t o  the onset of scoop instabi l i ty ,   the  
resultant  spil lage was able   to  pass mound .the i n l e t  with  the swept 
sp l i t t e r   p la te   ra ther . than  into the inlet. 

. .  

. 

. .. - . . . 

Swept boundary-layer  scoop a t  Mach 2.93. - A t  Mach 2.93 the  inlet  
mass f low a t  peak pressure  recovery was essentially  the same as that 
obtained with the ram scoop. P e a  pressure was generally  accmpanied by 
a smal l  amountof &le t  Fastability. Some o-he schlieren.  photographs 
of the peak pressure  condition in figure 7 show a s l igh t  f izziness  of 
the l i p  shock, indicating the magnitude  of the. instability. no bow shock 
was evident, as with  previous  results  using  the ram scoop. Peak pressure 
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. 
was again  attained a t  s l i gh t ly  reduced scoop mass flow fo r  h/6 great- 
than 1.0. Some reduction i n  fnlet s e n s f t i v i t y   t o  scoop mass flow was 
noted as for  the lower Mach  number. 

U 

Summary of  swept  scoop and  comparison wlth ram scoop. - Smmzy 
plo ts  of the s ide  inlet performance wlth swept-scoop boundmy-layer 

N 
(D 
Ip 
Ip 

removal are presented in. figures 8 and 9 for”ach numbers of- l.8& and 
2.93, respectively. Peak total-pressure  recovery is plotted as a func- 
t ion of  boundary-layer scoop height parameter h/S and scoop mass-flow 
r a t i o  ms/ms ,-. Regions of  h le t  in s t ab i l i t y  are represented by 
dashed curves. These r e su l t s  are similar to  those  previously  reported 
f o r  the ram scoop  and show graphically the sens i t iv i ty  of inlet   pres-  
sure recovery t o  boundary-layer removal. The regions of in le t   ins ta -  
b i l i t y  are essent ia l ly   the same as those  reported for the ram scoop. 

h figures 10 and 1l comgarisons are presented of the peak t o t a l  
pressure  for the cases  of m a x m  and zero removal  of the boundary layer  
as a function h/6 for the ram and  swept  scoops for  the two Mach numbers 
considered. With maximum removal of t he  boundary layer 

pressure  recovery; a t  Mach 1.88 i n  figure 10 the peak total-pressure 
recovery is approximately 89 percent. The  most s i  i f icant   dif ference 
i n  pressure recovery  occurred a t  Mach 2.93 near hF of 0.9; the peak 
total-pressure  recovgry  with swept-scoop  removal is 49.6 percent compared 
with 51.5 percent  for the ram scoop. This discrepancy is not readily 
explained  but may have resulted f’rom the s l i g h t  change i n  Reynolds num- 
ber. With no boundary layer being t aken  into the scoop (ms = 0), some 
improvements ‘in pressure  recovery were observed using the swept-scoop 
configuration . 

(5 1 ’2 LJ,3&x = l.O), the  two systems of removal  gave essent ia l ly  the same 

Visual flow observations. - During unstable  operating  conditions 
the shock patterns w e r e  found t o  vary with h/6, boundary-layer scoop 
mass flow, and degree of subcritical  operation. These shock patterns 
w e r e  described  Fully i n  reference 2 and apply equally well fo r   t he  swept- 
scoop configuration. One minor difference  noted was that f o r  subcritical 
operation with the swept  scoop the shock  disturbance was not  propagated 
upstream t o  the end of t he   p l a t e  as it was with the ram scoop. It is 
believed tha t   t he  ability of t h e  boundary-layer  scoop t o   s p i l l  wound 
the s ides   o f   the   in le t  my be an important  factor  affecting this reduc- 
t ion i n  de@;ree of  shock ins tab i l i ty .  

An attempt t o  examine the flow inside the inlet was made by modi- 
fying the swept-scoop m o d e l  used in the tests at Mach 1.88 by replacing 
the outer m e t a l  half-cylindrical   section with a Plexi las window. This 
required a modified e x t e r n a l  l i p  section, the f i rs t  172 inch  of which 
was i den t i ca l   t o  the original  section. Small thread t u f t s  w e r e  mounted 
on one-half  of the Plexiglas -daw, on the i n l e t  centerbody,  asd  along 
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the   f loor  of the inlet between the centerbody and the window. I n  f ig- 
ure 1 2  the movement of the  internal shock from well wi th in  the subscmic 
diffuser   to  peak pressure  recovery is presented. A s  indicated i n  f ig-  
ure 12 ,  separation  occurred  behind  the i n t e r n a l  shock, especially on 
the centerbody and on the  f loor of thcin1e-t- next  .to  the  centerbody. 
Mo separation was noted on the  Plexiglas w i n d m  except i n  the immediate 
vicini ty  of the shock, indicating a rapid  ..restt&chmen.t.m  the  surface 
subjected  to  the least boun&ry  layer. It was observed that, a t  the 
peak pressure  conditions  for the larger  values of h/6, reattachment of 
the boundary layer on the centerbody  occurred  surf  iciently  forward t o  
be viewed through the Plexiglas window. This  reattachment of the bound- 
ary layer on the centerbody w&s not observed a t  smaller  values of h/6, 
substantiating  the  belief  that   the boundary layer  entering  the inlet 
t ends  to   destabi l ize   the  internal  flow. Inlet ins tab i l i ty  was charac- 
terized by a rapid  fore and af t  movement of a U  t u f t s ,  indicating an 
actual  reversal  of the flow. When the   in le t  was operating supercrit i-  
cally,  decreasing  the  scaop mass flow u n t i l  scoop instability occurred 
produced essentially  the same results,   with  the  oscil lation of the tufts 
being most noticeable on the floor and on the centerbody. 

.. . . .  

" 

Scoop P e r f o m c e .  .. 

Performance characterist ics of the swept scoop are  presented i n  . 
figure 13. Scoop t o t a l  pressure P2,s/F(3 is plotted a13 a function of 
the  theoretical scoop mass-flow r a t i o  m s / y , s  for  several values of c 

h/6. The theoretical  mass flow .which wod.0 b.e captured -in the etream 
tube of the  projected scoop if na spillage  occurred is represented by rnl,-,. A comparison  of figures 13(a) and 13(b) w i t h  references 1 and 2, ' 

respectively,  for  the  ran-scoop"  indicates that the swept-scoop conf ig-' 
uration  spilled 15 tn 20 percent more f l o w  than  the ram s c o q  a t  Mach 
1.88, while 5 to .  =..percent- more was spilled. .at..,Mash 2 . 9 3 .  Peak scoop 
pressure  recovery  with  the swept  scoop is essentially  the same as that 
obtained with the ram scoop a t  Mach 2.93;-while &Mach-1.88, the swept 
scoop yields a slightly  higher  value.  Included i n  figure. 13 m e t h e  
theoretical  scoop total-pressure  recovery data according t o   t h e  method 
of reference 8. .These data were obtained  using a calculated power pro- 
f i l e  parameter N of 7 ,  and correspond i n  the  present  notation  to 
h/6 of 1.0. Friction losses were not  included. I t i s  f e l t  that most 
of the  discrepancy between the  theoretical and measured total   pressures 

." 

." 

was due to   t he  rather 
made necessary by the 
shown i n  figure l (a) ;  
ing  factor. 
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Alternative Boundmy-Layer-Remaval Systems a t  Mach 1.88 

I n  an attempt t o  provide  the  designer  with  information of the 
effectiveness of systems of boundaxy-layer rerncsml i n  which the  boundary 
layer i s  no t  taken into  ducts but  rather is diverted around the inlet 
beneath  the  spli t ter   plate,   several   al ternative systems of boundary-layer 
removal  were attempted i n  reference 1 at  Mach 1.88. These results me 
reproduced i n  figure 14. Shown for  ccanparison are   the ram-scoop d a t a  
for  maximum and zero  boundary-layer  removal. These latter two curves 
are s l ight ly   different  frm those  presented i n  f igure 10 because of the 
difference in the boundary-layer  thickness  parameter 6/R. 

The first vaziat ion attemgted was t ha t  of removing the  sides of 
the ram scoop to a point approxFmately one i n l e t  radius  downstream of 
the i n l e t   l i p .  The boundary-layer  duct was reinoved and replaced with 
a b lun t  deflectur downstream of the i n l e t  l i p  (fig.  d(b) ,  ref. 1). The 
maximum total-pressure  recovery, obtained a t  h/6 of 1.0, was 7 per- 
centage  points lower t han  that obtained  with  complete removal through 
the scoop. 

The second al ternat ive was a s-le  modificatfon of the first. 
The spl i t ter   p la te   dividing  the  Inlet  From the boundary layer was swept 
from the spike t i p  t o  the  inlet   l ip   ( f ig .   $(e) ,  ref. 1). This arrange- 
ment  worked especially w e l l ,  giving a pressure  recovery 3 percentage 
points below that obtained  with  the  original scoop a t  h/6 = 1.0. A 
thi rd method  employed  cowl s l o t s  ( f ig .  4 ( d ) ,  r e f .  11, allowing the low- 
enerQy air which  accumulates i n  the  corners  to spill ou t  of the in l e t .  
This configuration was found to   give  essent ia l ly   the same t o t a l  pres- 
sure as  the ram scoop a t  the  larger  values of h/6. 

Another configuration  investigated  but no t  reported in reference 1 
was a curved wedge instal led  beneath  the  spl i t ter   p la te  at h/6  of 
1.0. This wedge was approximately  the same s ize   as   the wedge reported 
herein, but  had concave rather than straight  sides.  This configuration 
gaxe a pressure  recovery 5 percentage  points below that obtained with 
the rasl-scoop model. 

Boundary-layer removal using 62' wedge. - To extend  the data of 
a l ternat ive boundary-lay--removal systems, a d d i t i o n a l  da ta  were  
obtained on the wedge r-&o-v&l system-. The~model  limfted  the m i n i m u m  
lncluded wedge angle that could be used beneath  the  spli t ter   plate t o  
62O 61, with the t i p  of the wedge directly  beneath the apex of . 
the  spike  (figs. l(b) and l(c)). Wedges of various  thicknesses were 
installed to give  the  variation of inlet  pressure  recovery  with h/6, 
where h is defined as the  thiclmess of the wedge plus  the  thickness 
of the   sp l i t t e r   p la te  (0.032 in.). This definitlon of h is then 
equivalent t o  that used with scoop remoml. Each wedge was instrumented 
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with  static-pressure taprs (shown schematically i n  f ig .  20) i n  order 
that the  pressure  drag on the wedge could  be  determined. The result ing 
inlet  pressure  recovery - mass-flow characterist ics  as a function of 
h/6 are presented in figures  15 and 16 for Mach numbers .of 1.88 and 
2.93,  respectively.  Inlet  instability is again shown with dashed l ines .  
A t  the lower Mach number, design supercrit ical   spil lage was obtained; 
whereas a t  Mach 2.93 additional  spillage of the  order of 5.5  percent 
was observed  with  the  largest wedge heights. An oi l - f low technique 
indicated a detached bow wave ahead of the wedge at both Mach numbers. 
The a d d i t i o n a l  sp i l l age   a t  Mach 2.93 may perhaps  be  attributed t o  the 
effects of t h i s  detached wave on the boundary layer ahead of t he   i n l e t ;  
it is n o t  understood, however, why a similar effect  was n o t  observed 
a t  the lower Mach number. 

Schlieren photographs of the peak pressure  conditions  are  presented 
Fn figures 17 and 18. The detached bow  wave ahead of the wedge a t  
Mach 1.88 is indicated in figure 17, which has been retouched s l igh t ly  
f o r  o l a r i t y .  (It is not  indicated in f i g .  18 at"ach 2.93 because of 
the lack of sensi t ivi ty  of the  schlieren  apparatus.) The standing bow 
wave ahead of the   in le t   a t   the  peak pressure  condition  correlates  the 
subcr i t ica l   s tab i l i ty  noted a t   t he  lawsr Mach number in  figure 15. 

During unstable  inlet  operation  the shock disturbance was trans- 
mitted  almost t o  the end of the  plate  for  al l   values of h/s a t  the 
lower Mach number. A t  the  higher Mach  number the @ h o c k  oscil lation 
during buzz  extended onto the  plate   a t   the .  loTJer yaJuas. of. h/6; but 
for h/S of 1.133 and 1.655, the shock oscil lation was rest r ic ted t o  
the  spike only. Typical examples of these buzz p s t t e r n s  are  indicated 
i n  figures 19(a) and 19(b). Ekposure time was approximately 1 micro- 
second.  Figure 19(a) represents  the shock pattern  that  extends upstream 
of the  spike.  Separation of the boundary layer behind the  forward shock 
was observed.  Figure 19(b) denotes a typical shock pattern on the 
spike. The normal  shock moved -om ins ide   the   l ip  t o  about  one-half 
the  distance between the l i p  and the  spike  during this unstable  opera- 
t ion.  

Wedge drag. - Wedge static-pressure  distributions and or i f ice  
s t a t i o n s  are  presented i n  figure 20. The free-s-t;lre.am stat ic   pressure 
was determined  with an or i f ice  on the main plate  located  approximately 
2.75 inches  upstream of the  spike  t ip.  Each wedge was instrumented with 
one or more rows of stat ic   or i f ices   with 4 orifices  per row. The s ta t ic -  
pressure  coefficient  at  each or i f ice  was determin-ed. f r o m .  

. 
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Inasmuch as the  s ta t ic   pressure appeared t o  be a function  of  only  the 
distance  along  the wedge (i.e., not a function  of the ver t ica l  orifice 
lmation,  except  perhaps a t  the  most upstream or i f ice   s ta t ion) ,   the  
s ta t ic   pressures  were averagd a t  each of the  four  orifice  stations.  
The result ing  static-pressure  distributions  along  the wedge during 
supercr i t ical  inlet operation are presented  in figures 20  and 2 1  for  
Mach numbers 2.93 and 1.88, respectively. The static-pressure  coeffi- 
cients were smewhat smile?? a t  Mach 2.93 than a t  1.88. These pressure 
distributions,  which appeared t o  correspond t o  subsonic flow along  the 
wedge, m i e d  considerably and irregulmly, the trend of larger 
pressure  coefficients with increasing  values of was observed fo r  
the two  Mach numbers considered. 

A pressure  drag  coepficient 

defined by these  data was determined; the  distributions are presented 
in figures 22 and 23 fo r  Mach numbers 2.93 and 1.88, respectively. The 
pressure  drag  coefficient is plotted as a function of i n l e t  mass f l o w  
for several  values of h/6. The solid partions of the  curye  correspond 
t o  stable inlet  operation. The pressure  drag  coefficient was found t o  
increase  steadily as the  height of  boundary-layer removal was increased. 

Boundary-layer removal using  cowl-lip  scoop. - C a r l  s l o t s  provide 
a method of allowing low-energy air  which tends t o  accumulate i n  the 
corners of the  i n l e t  t o  escape-  by means of the pressure  differential  
which exists across the l i p .  The effectiveness  of  this removal  system 
is indicated in figure 14. It was proposed that a more posit ive method 
of keeping the  boundary layer out of the i n l e t  might be more effect ive 
and thus improve the   i n l e t  performance at the lower values  of h/6. 
Accordingly,  the cowl s l o t  was modified into a cowl-lip  scoop, the 
details of Which w e r e  given in  figures l(d) and l ( e ) .  This configuration 
was 3nvestigated in some d e t a i l  at Mach 2.93 and less coxupletely at 
Mach 1.88. The resulting  pressure  recovery - mass-flaw characterist ics 
of the i n l e t  are presented i n  figures 24 and  25 for several  values of 
h/6, where  h is defined as the height of the   s lo t .  In these figures 
the  reference  pressure P1,D, which by definition is the  average  total  
pressure ahead of the   in le t  in the  projected axe8 of the in le t ,  is arbi- 
t ra r i ly  held  constant st the  value  corresponding to h/6 of zero i n  
figure 3 because of the   diff icul ty  in estimating  the  effective  projected 
area  of the inlet with  this type of boundary-layer  removal. (The cowl 
s l o t  data i n  figure 14 have been corrected t o  th i s   bas i s  i n  transcribing 
the d a t a  from ref. 1.) Thus, in figure 24 f o r  Mach 2.93, it may he 
observed t h a t  as the  height of the  cowl-lip scoop is increased,  pressure 
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recovery  increases; whereas the i n l e t  mass flow generally decreases. 
A t  the  largest  scoop height tested (h/6  of 1.254),  thspeak  pressure 
recovery i n  terms of the average pressure ahead of the  inlet was 54.9 
percent. A peculiar  double peak curve was noted fo r   t h i s  value of h/6, 
w i t h  i n l e t   i n s t ab i l i t y  occurring at the first peak. I n  figure 25 for 
Mach 1.88, the  cowl-lip scoop was investigated  only a t  h/S of 1 .O and 
1.361.  Considerably more mass flow was spil led a t  Mach 1.88 than a t  
Mach 2.93. 

Schlieren  photographs of the i n l e t  at peak pressure  recovery  are 
shown i n  figures 26 and 27. In figure 26 for  Mach 2.93 a bow wave -8 
observed a t  h/S of  1.2543 the  interaction of t h i s  wave with  the con- 
i ca l  shock and lambda form of the bow wave r e s u l t e d  i n  a twin  vortex 
sheet n e a r  t h e   l i p  which perhaps  contributed to   t he  unusual form of the 
pressure  recovery m i a t t o n  with i n l e t  mass flow. A t  the remaining 
values of h/6, the peak pressure  condition "s steady and no bow waves 
were noted. A t  Mach 1.88 figure 27 showa that a bow shock was a l s o  
observed a t  h/S of 1.361 i n  accordance  with  the  reduced in l e t  mass- 
flow r a t i o  at the peak pressure  condition. 

Unstable i n l e t  operation  shock pa t t e rns  for the two.Mach  numbers 
were identical. In figure 28(b) for  the larger values of h/6, the 
shocks were confined to  the  spike.  A t  the .lower values of h/S t h e -  
shock oscil lation was extended to   the  plate ,  as shown i n  figure 28(a). 

Comparison of Boundary-Layer-Removal Syst" 

AB mentfoned previously, the significance of h/S i n  the  case of 
the  cowl-lip scoop is not  the same as with a scoop  removal system. For 
the latter, h/6 is a measure of that portion of the boundary layer pre- 
vented from entering  the  inlet. For the scoop  removal configurations, 
P1,D tends toward the free-stream t o t a l  pressure as h/S is hcreased. 
I n  the  case of the  cowl-lip  scoop, P1,D was considered  constant at 
the  value  corresponding t o  h/6 equal t o  zero  for  the scoop removal 
systems. It is thus  diff icul t  t o  compare the   in le t  performance for  the 
three systems of boundary-layer  removal investigated here in  an the basis 
of" the  average  pressure ahead of the i n l e t .  LLoWever, in the interests 
of consistency,  figures 29(a) and 30(a) compare the  inlet   pressure 
recovery with the swept-scoop and deflection-wedge removal systems on 
the basis of P1,D. For a Comparison of all three systems, the pressure 
recovery is referenced to  the  free-stream  total  pressure Po i n  f ig- 
ures 29(b) and 30(b). Figure 3 was used i n  the  conversion. 

. .  

In figure 29(b), for  Mach 2.93, it may be  observed tha t  each  sys- 
tem of boundary-layer removal gave Etpljroximately 48 percent  total  pres- 
sure  recovery  for h/S greater t h a n  1 .2 .  The peak values of 
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total-pressure  recovery  varied only s l igh t ly  from 49 percent and 
occurred at appreciably  dif'ferent  values of  scoop height  parameter. 
The total-pressure  recovery  obtabed  using  the ram scoop w a s  51.5 
percent, as mentioned previously. 

Similarly, peak total-pressure recovqy d a t a  for   the  three systems 
of boundary-layer removal a t  Mach 1.88 are presented in figure 30(b). 
It was noted tha t  each  system of boundary-layer  removal  investigated 
herein and the ram scoop  gave ccmptwable total-pressure  recoveries of 
89 percent,  although a larger  scoop height was required for the wedge 
and cowl-lip  scoop systems. A comparison  of the  cowl s l o t  of  figure 14 
with  the  cowl-lip scoop  of the  present  investigation  indicates that at  
large  values of h/S the pressure recovery of the  cowl-lip scoop is 
slightly  higher  than that obtained  with  the  original cowl s lo t .  A t  low 
values of h/S d i rec t  comparisons  cannot  be made because of the lack 
of data in the present  investigation, although the general fa i r ing  of 
the  curves  indicates  that  the cowl s l o t  and cowl-lip  scoop are canpar- 
able. 

Although cowl-lip  scoop and  wedge removal  systems would  not  gener- 
a l ly  be expected to   y i e ld   t he  same variation of inlet  pressure  recovery 
with h/S as would the conventional  boundary-layer  scoop, some explan- 
ation is believed  required  for  the  discrepancy between the inlet   per-  
formance with scoops and w i t h  wedges. It should be  noted that the wedge 
studied i n  the present  investiga.tion had a half-angle greater than the 
compression  cone  half-angle;  hence the  wedge shock (even i f  attached) 
would l i e  ahead of the leading edge of the s p l i t t e r  plate which was 
swept nearly at  the  conical shock angle .  Detachment of the wedge shock 
due to   the  boundary layer would aggravate  this  condition. For example, 
at h/S of 1 .O, sme of the  boundmy layer behind the shock f r o m  the  
wedge  would flow up and over t he   sp l i t t e r  plate into  the i n l e t .  Thus 
it might be expected that 8x1 h/6 greater  than 1.0 would be required 
t o  keep the low-energy air out  of the W e t .  It might a l s o  be expected 
that a reduction in sweep of the sp l i t t e r   p l a t e  would reduce the upflow 
of  law-energy air into  the inlet. 

For a somewhat similaz wedge-inlet  cambination in reference 9 
there w e r e  indications of be t t e r  wedge effectiveness. The wedge in tha t  
example was beveled at 30°. Also, unpublished d a t a  f r o m  the  authors  of 
references 3 and 4, f o r  two-dimensional  canpression ramp and spike-type 
i n l e t s ,  respectively, have shown equivalent inlet pressure  recovery - 
mass-flow characteristics  with wedge and scoop  removal  systems at h/s 
of 1.0. The wedge included  angle was approximately the same as the 
angle of the  present tests. One appreciable difference i n  the config- 
urations was t ha t  in references 3 and 4 the  leading edge of the wedge 
was set aft  of the  leading edge of   the  spl i t ter   p la te  by approximately 
20 percent of the dfs tance  to  %he l i p  of the i n l e t .  The oil-flow 
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technique mentioned .previously showed that as the wedge m s  moved a f t  
beneath the   sp l i t t e r  plate, the detached b& shock in front of the wedge - 
tended t a  follow. The rather effective boundary-layer removal. observed 
in even the extreme case of reference 1, when cmplete blockage of the 
flow beneath the swept splitter p la t e  was allowed considerably d m -  
stream of . the   i n l e t  l i p ,  is thus  reasonable i f  the bow shock is a l s o  
downstream of the i n l e t   l i p .  

3h summary, then, the deflection wedge system  of removal should be 
m o r e  effective if' one or m o r e  of the follawlng steps me taken: (1) 
the wedge is located downstream of the apex of the cone, (2) the wedge 
included  angle is reduced, and (3) the sweep of the   sp l i t t e r   p la te  is 
reduced. 

An additional  indication of the effectiveness of the three systems 
of boundmy-layer  removal is given in figures 31 and 32 for Mach numbers 
of 2.93 and 1.88, respectively. The mass-flow r a t i o  d m ( D + s l , o  for 
c r i t i d   i n l e t  operation is plotted as a function of h/6. The mass 

=(D+s) ,O represents the theoretical  mass flow passing through 
the stream  tube of the  projected  inle-kplus boundary-layer-rem- sys- 
tem at  flree-stream conditions and is directly  proportional t o  the total 
projected area. The mass-flaw r a t i o  %/m(D+s) ,o is therefore indica- 
t i ve  of the i n l e t  mss flow  per  unit  total  projected area. An Fndica- 
t ion of the  re la t ive  s izes  of the  inlet   ins ta l la t ions  required  to   del iver  
the same amount of inlet mass flow at equivalent  pressure  recoveries 
may be obtaked from these figures. A t  the h/S a t  which maximum pres- 
sure recovery was attained  (indicated by  flagged symbols i n  f igs .  31 
and 32), it may be seen that at Mach 2.93 the inlet mass flow per  unit  
total  projected area is largest for  the cowl-lip r-emoval system; or, t o  
capture  the same amount of inlet mass flow, the  required  total  projected 
area of the  cowl-lip scoop in l e t  is smaller than for the scoop- and 
wedge-type inlets. A t  the lower Mach number (fig.  32), the required 
projected areas are essentially  equivalent  for the c m l - l i p  scoop and 
inlet-scoop  configurations, while the,wed4e removal configuration 
requires  sl ightly  larger  inlet .  Improvement i n  the design of the.wedge 
instal la t ion would probably resu l t  i n  only small differences i n  t o t a l  
projected area of the three installations.  . .  

. . .. .j .. . . . ." 

- 

._-_ - -  
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SUMMARY OF RESULTS AND CobTCLUSIONS 

An experhnental  investigation t o  compare several systems  ofboundary- 
layer removal ahead of a typical  conical  external-campression a i d e  i n l e t  
yielded the  following  results: 

L 
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1. The maximum total-pressure  recoveries observed a t  Mach numbers 
of 1.88 and 2.93 were approximately 89  and  49 percent,  respectively, 
for all systems of boundary-layer removal investigated.  This campares 
trlth 89 and 51.5 percent  previously  obtained  with  the same Fnlet u t i l -  
izing  the ram-scoop removal system. 

\ 

2. The swept-leading-edge  boundary-layer  scoop was found t o  offer 
only  slight improvements in' the  reduction of  inlet  sens i t iv i ty  t o  the 
boundary-layer-scoop mass-flow r a t i o  over that previously  observed wi.th 
a ram-type boundmy-layer  scoop. The effect .of scoop ins t ab i l i t y  on 
the i n l e t  was reduced s l igh t ly  by use of the swept scoop. 

3. Two al ternat ive systems of boundmy-layer removal, namely, the 
deflection wedge and the cowl-lip scoop, w&re found t o  provide inlet 
total-pressure  recoveries  carparable  with  those  of the scoop  removal 
systems provided slightly  increased  values  of  boundary-layer scoop 
height were ut i l ized.  

4. A t  equivalent  pressure  recoveGies  the  cowl-lip  scoop  spilled 
the   l eas t  amount of air and indicated  amtotal   projected frontal area 
of inlet   p lus  scoop as small  m - o r  smaller than  t he   i n l e t  with conven- 
t iona l  scoop or  wedge r e m o d  systems. 

Y 2 
L a r i s  Flight h-opulsion  Laboratory - National  Advisory Committee fo r  Aeronautics 

Cleveland, Ohio, June 5 ,  1953 
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(a) Bwept-acwp cod'lguration 

Figure 1. - Boundary-laRr-reinowd systems. 



(b) 62’ 6 ’  wedge configuration. 

Figure 1. - Continued. Boundary-Layer-removal systems. 
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Internal   spl i t ter   p la te  

\ t Wooden fairing Internal splitter - 
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(a) cowl-lip scoop. 

Figure 1. - Continued. Boundary-layer-ramd systems, 
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(e) Photograph of o w l - l i p  6coop m o d e l  inetalled in l8- by 18-inah Mach 1.91 tunnel. 

Fume 1. - Concluded. Boundarg-layer-m-oval eyskem. 
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Figure 2. - Location of p i to t - s ta t ic  tubes in diffuser pressure 
rake. 18- by 18-inch  Mach 1.91 tunsel. 
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Boundary-layer scoop height  parameter, h/8 

,j Figure 3. - Sumnary of dfec t  of presence of boundmy Layer an  mess f l o w  and 
i total  pressure ahead of idlet and boundary-layer ECOO~. * : 
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(a)  h/8 - 0.262. (b) h/B - 0.534. 

Figme 4 .  - mlst total-pressure recovery a8 funation of ln lep  mass-flow ratio for V a r i o u s  boundary-layer sooop heights and boundary-lajer 
, 8amp masa f l a a  eJ Haah 1.v.. Swept-sowp inlet; bouudai-r-lwer thiohsas'r#reau3ter, q.150. S I  

I 
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H ~ 1 . 0  
Constant -- Constant diffuser e a t  

Indicated 
Mach number, #2 

0 Unstable  inlet  operation 

( e )  h/6 - 1.053. ( f )  h/B - 1.249. 
PIKUPS 4. - Concluded. Inlet total-pressure reoovev 81 hnotlon of inlet mass-flow ratio for various boundary-layer scoop  heights and 

boundary-layer  scoop meas flows at Maoh 1.68. Swept-sooop Inlet; boundary-layer thiaheas parameter, 0.150. 
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(a) h/6 = 0.388. (b) l-&l .I 0.696. ( 0 )  h/o - 0.842. 
Figure 5. - Inlet total-pressure recovery na function of Inlet maaa-flow ratio for various boundary-layer acoap heights and boundary- 

layer sooap mas6 tlows at Mach 2.93. SwepF-scoop inlet3 boundary-layer thlclaxsa parameter, 0.160. 
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(a) h/B''*L 1.021. ( e )  h/8 - 1.217. 
Figure 5. - Concluded.  Inlet; total-pressure  reoovery afi funotlon of inlet mass-flow ratio for various boundary- 

layer  sooop  helghta  and  boundary-layer  sooop ma88 flows at Maah 2.93. Swept-sooop  Inlet;  boundary-layer 
thickness  parameter,  0.160. N 
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Figure 6. - Steady schllefin photographs of peak press- o.ondltione.for swept-scoop m d e l  
at Maoh 1.88. 
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Figure 7.  - Steady sohlieren photographe of peak ~ e e u r e  conditione f o r  m$t-scoop 
model at Maoh 2.93. 
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Figure 9. - Summary of effect of boundary-layer removal on peak total-pressure recovery 
of side inlet with swept scoop at Mach 2.93. 
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Figure LO. - Conrparison of -peak total-pressure recoveries of side 
inlets with ram and swept scocvps at "ach 1.88. 
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Boundary.-layer scoop height  parameter, h/6 1 

Figure U. - Comparison of peak total-pressure recoveries of side Inle.bs 
with .ram and swept scoops at Mach 2.93. 
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Scoop mass-flow ratio baaed on profile upafream of Inlet, m$ml,s 
(a )  m c h  1.88. (b) Mach 2.93. 

Figure 13. - Comparlaon o f  scoop total-preasure  recovery aa function of scoop mass flow for swept-scoop configurations 
at Mach numbers 1.88 and 2.93. 
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Zero scoop mass f-w 

. . . " . ". . . - . " . - " 

Boundary-layer .scoop height . p w t e r ,  @IS 

Figure 14. - S-ry o f  peak total-pressure redo+& for several systems of 
boundary-l@r- rCinom.l at Mach 1.88. Bouxia~~:Lajrer thickness parameter 
6/R, 0.093. . ,  . . . ._ . 
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Inlet mass -flow ratio, d m  
1, D 

Figure 15. --.Effect of KeQe boundary-layer 
removal on inlet pressure recoveq and mss 
flow a t  Mach 1.88. 
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. (b) h / b ,  1.048; P2,=/P1,=, 0.811; 
.ah9, 0.947. 

Figure 17. - Steady sohlleren photographs d peak preeeure conditions for wedge mcdel 
at  Mach 1.88. 
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Static  orifice  location, z/- 

Figure 20. - Wedge static-pressme distributAoas with supercritical. 
inlet operation at Mach 2.93. . .  
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Static orifice  location, z / h  

Figure 21. - Wedge static-gressure  distributions with supercrit  
inlet operation at Mach 1.88. 
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-7c) n .o 

Boundary-layer 
scoop height ' 

parameter, 

0 - 1.655 " 

.b. ... .988. 
0 .654 
V .467 

0 1.133 

I n l e t  mass-flow r a t io ,  q,/ml,D - 

Figure 22. - Effect cf wedge he-Z&t aiid Trilet%a-s ... - 
flow on wedge preseure drag  coefficient at'"ach 2.93. 
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Figure 23. - Efkect of wedge height and inlet mass 
flow on wedge pressure  drag coefficient at ‘Mach 1.88- 
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. LIU 

.6 .7 .8 - .9 
LIL=~ mass-flow rat io, m D / m l , n  

1.0 

Figure 24. - -Effect. of cowl l i p  scoop boundary-layer 
removal ori inlet pressure recovery and mass f l o w  at 
mch 2.93. 
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. Scoap height 

I parameter, 

7 : 1.0 I 1.361 

- 8  .9 1.0 
W e t  mass-flow ratio, d m l , =  

F4gure 25. - Effect of cowl-lip ecoap boundary-layer removal on 
inlet pressure recovery'and mass flow at Mach 1.88. 
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(b) h/&, 0.603:P2 D/Pl,D, 0.420; 
. .  

mD/ml,D, 0.988. 
>- - . .  
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( e )  h/d, 0.925;.averag@ Pz,#?;,$,. 0.421; e v e m e  0.616. 

(b) h/&, 1.254; average P2,D /p 0.523; average m&l,D, 0.765. 
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.2 .c .6 .a 1.0 1.2 1.4 1.6 1.8 
Boundary-layer scoop height  parameter, h/6 

(a) Total.  pressure  referenced to average  total  pressure  ahead of inlet. 

Figure 29. - Comparison of peak  total-pressure  recovery for several  boundary-layer-removal 
systems at Mach 2.93. 
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1.8 
Boundary-Layer scoop  height  parameter, ,h/6 

(b) Tota l  pressure referenced to free-stream value. 
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.2 -4 .6 .a 1.0 1.2 1.4 1.6 
Boundary-layer scoap height  parameter, h/8 

(a) Tota l  pressure  referenced to average total  pressure ahead of inlet. 

Figure 30. -. C o r p p a r i s o n  of peak total-pressure ~'ecuvery far several boundary- 
layer-removal  systems at bch 1.88. 



56 NCICA RM E53F16 

(b) T o t a l  press- refgrenc+.Jx_fYee-stre~ yalue. 
Figure 30. - Con@.udecl, Coniparison of . p e a k  *tal-pressure recovery for 

. .  

several boundery-layer-remok%l s y s t e m  at kch 1.88. 
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Figure 31. - Cri t ica l  inlet mass-flow ra t io ,  f o r  several systems of boundary- 
layer remod at Mach 2.93. 
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Figure 32. - CritLcsl W e t  mass-flow ratio for  several systems of boundary-layer 
reme& at Mach 1.88. 
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